1,215 research outputs found

    In situ observations on deformation behavior and stretching-induced failure of fine pitch stretchable interconnect

    Get PDF
    Electronic devices capable of performing in extreme mechanical conditions such as stretching, bending, or twisting will improve biomedical and wearable systems. The required capabilities cannot be achieved with conventional building geometries, because of structural rigidity and lack of mechanical stretchability. In this article, a zigzag-patterned structure representing a stretchable interconnect is presented as a promising type of building block. In situ experimental observations on the deformed interconnect are correlated with numerical analysis, providing an understanding of the deformation and failure mechanisms. The experimental results demonstrate that the zigzag-patterned interconnect enables stretchability up to 60% without rupture. This stretchability is accommodated by in-plane rotation of arms and out-of-plane deformation of crests. Numerical analysis shows that the dominating failure cause is interfacial in-plane shear stress. The plastic strain concentration at the arms close to the crests, obtained by numerical simulation, agrees well with the failure location observed in the experiment

    Degradation of Semiconductor Manufacturing Wastewater by Using a Novel Magnetic Composite TiO 2

    Get PDF
    The purpose of this research is to develop a photocatalytic TiO2 that can be activated by visible light and can be conveniently recollected for reusing. This research synthesizes the 20 to 40 nm TiO2/Fe3O4 particles with magnetization of 5.8 emu/g using the modified sol-gel method followed by 500°C calcinations. The experiment verified that visible fluorescent light (VFL, contains no UV-A) could activate the photocatalytic activity of TiO2/Fe3O4 particles as did ultraviolet A light (UV-A, 360 nm). Regular magnets can be used to separate TiO2/Fe3O4 particles from solution. The results indicate that VFL-sirradiated TiO2/Fe3O4 particles could decompose isopropanol (IPA) in the absence of UV-A and the issue of TiO2/Fe3O4 recollection from water for reusing is also resolved

    Thermo-mechanical analysis of flexible and stretchable systems

    Get PDF
    This paper presents a summary of the modeling and technology developed for flexible and stretchable electronics. The integration of ultra thin dies at package level, with thickness in the range of 20 to 30 μ m, into flexible and/or stretchable materials are demonstrated as well as the design and reliability test of stretchable metal interconnections at board level are analyzed by both experiments and finite element modeling. These technologies can achieve mechanically bendable and stretchable subsystems. The base substrate used for the fabrication of flexible circuits is a uniform polyimide layer, while silicones materials are preferred for the stretchable circuits. The method developed for chip embedding and interconnections is named Ultra Thin Chip Package (UTCP). Extensions of this technology can be achieved by stacking and embedding thin dies in polyimide, providing large benefits in electrical performance and still allowing some mechanical flexibility. These flexible circuits can be converted into stretchable circuits by replacing the relatively rigid polyimide by a soft and elastic silicone material. We have shown through finite element modeling and experimental validation that an appropriate thermo mechanical design is necessary to achieve mechanically reliable circuits and thermally optimized packages

    Metastatic Gallbladder Cancer Presenting as a Gingival Tumor and Deep Neck Infection

    Get PDF
    Gallbladder cancer has an extremely poor prognosis because it is often diagnosed at an advanced stage. We describe a 63-year-old woman who was treated 4 years previously for gallbladder cancer, with laparoscopic cholecystectomy and secondary hepatectomy after presenting with acute cholecystitis and gallbladder rupture. At her second presentation, she had a left lower gingival tumor and deep neck infection. Incision and drainage and tumor biopsies were performed, and pathology at both sites revealed adenocarcinoma. Positron emission tomography revealed other tumors in the left breast and left lower lung field, which were both proven to be adenocarcinoma by biopsy. The patient's presentation with a metastatic oral tumor was rare. Although the incidence is very low, physicians should consider the possibility of metastatic cancer in a patient with a history of cancer, who presents with new oral tumor or deep neck infection

    Obstacle-Resistant Deployment Algorithms for Wireless Sensor Networks

    Get PDF
    [[abstract]]Node deployment is an important issue in wireless sensor networks (WSNs). Sensor nodes should be efficiently deployed in a predetermined region in a low-cost and high-coverage-quality manner. Random deployment is the simplest way to deploy sensor nodes but may cause unbalanced deployment and, therefore, increase hardware costs and create coverage holes. This paper presents the efficient obstacle-resistant robot deployment (ORRD) algorithm, which involves the design of a node placement policy, a serpentine movement policy, obstacle-handling rules, and boundary rules. By applying the proposed ORRD, the robot rapidly deploys a near-minimal number of sensor nodes to achieve full sensing coverage, even though there exist unpredicted obstacles with regular or irregular shapes. Performance results reveal that ORRD outperforms the existing robot deployment mechanism in terms of power conservation and obstacle resistance and, therefore, achieves better deployment performance.[[incitationindex]]SC

    Printed circuit board technology inspired stretchable circuits

    Get PDF
    In the past 15 years, stretchable electronic circuits have emerged as a new technology in the domain of assembly, interconnections, and sensor circuit technologies. In the meantime, a wide variety of processes using many different materials have been explored in this new field. In the current contribution, we present an approach inspired by conventional rigid and flexible printed circuit board (PCB) technology. Similar to PCBs, standard packaged, rigid components are assembled on copper contact pads using lead-free solder reflow processes. Stretchability is obtained by shaping the copper tracks as horseshoe-shaped meanders. Elastic materials, predominantly polydimethylsiloxanes, are used to embed the conductors and the components, thus serving as a circuit carrier. We describe mechanical modeling, aimed at optimizing the build-up toward maximum mechanical reliability of the structures. Details on the production process, reliability assessment, and a number of functional demonstrators are described
    • …
    corecore